Ku Must Load Directly onto the Chromosome End in Order to Mediate Its Telomeric Functions
نویسندگان
چکیده
The Ku heterodimer associates with the Saccharomyces cerevisiae telomere, where it impacts several aspects of telomere structure and function. Although Ku avidly binds DNA ends via a preformed channel, its ability to associate with telomeres via this mechanism could be challenged by factors known to bind directly to the chromosome terminus. This has led to uncertainty as to whether Ku itself binds directly to telomeric ends and whether end association is crucial for Ku's telomeric functions. To address these questions, we constructed DNA end binding-defective Ku heterodimers by altering amino acid residues in Ku70 and Ku80 that were predicted to contact DNA. These mutants continued to associate with their known telomere-related partners, such as Sir4, a factor required for telomeric silencing, and TLC1, the RNA component of telomerase. Despite these interactions, we found that the Ku mutants had markedly reduced association with telomeric chromatin and null-like deficiencies for telomere end protection, length regulation, and silencing functions. In contrast to Ku null strains, the DNA end binding defective Ku mutants resulted in increased, rather than markedly decreased, imprecise end-joining proficiency at an induced double-strand break. This result further supports that it was the specific loss of Ku's telomere end binding that resulted in telomeric defects rather than global loss of Ku's functions. The extensive telomere defects observed in these mutants lead us to propose that Ku is an integral component of the terminal telomeric cap, where it promotes a specific architecture that is central to telomere function and maintenance.
منابع مشابه
Ku Binding on Telomeres Occurs at Sites Distal from the Physical Chromosome Ends
The Ku complex binds non-specifically to DNA breaks and ensures repair via NHEJ. However, Ku is also known to bind directly to telomeric DNA ends and its presence there is associated with telomere capping, but avoiding NHEJ. How the complex discriminates between a DNA break and a telomeric extremity remains unknown. Our results using a tagged Ku complex, or a chromosome end capturing method, in...
متن کاملMutually Exclusive Binding of Telomerase RNA and DNA by Ku Alters Telomerase Recruitment Model
In Saccharomyces cerevisiae, the Ku heterodimer contributes to telomere maintenance as a component of telomeric chromatin and as an accessory subunit of telomerase. How Ku binding to double-stranded DNA (dsDNA) and to telomerase RNA (TLC1) promotes Ku's telomeric functions is incompletely understood. We demonstrate that deletions designed to constrict the DNA-binding ring of Ku80 disrupt nonhom...
متن کاملKu's essential role in keeping telomeres intact.
T elomeres, the specialized nucleoprotein structures present at the ends of linear chromosomes, function to prevent natural chromosomal termini from activating the DNA damage response and becoming substrates for inappropriate DNA repair. Telomeres are organized into lariat-like structures known as tloops, which are formed by the invasion of the terminal G-rich 3 telomeric overhang into the prox...
متن کاملTelomere maintenance is dependent on activities required for end repair of double-strand breaks
Telomeres are functionally distinct from ends generated by chromosome breakage, in that telomeres, unlike double-strand breaks, are insulated from recombination with other chromosomal termini [1]. We report that the Ku heterodimer and the Rad50/Mre11/Xrs2 complex, both of which are required for repair of double-strand breaks [2-5], have separate roles in normal telomere maintenance in yeast. Us...
متن کاملTRF2-tethered TIN2 can mediate telomere protection by TPP1/POT1.
The shelterin protein TIN2 is required for the telomeric accumulation of TPP1/POT1 heterodimers and for the protection of telomeres by the POT1 proteins (POT1a and POT1b in the mouse). TIN2 also binds to TRF1 and TRF2, improving the telomeric localization of TRF2 and its function. Here, we ask whether TIN2 needs to interact with both TRF1 and TRF2 to mediate the telomere protection afforded by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011